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Abstract-Numerical solutions to the classical Graetz problem in the entrance region of a pipe produce 
estimates of the Nusselt number which are greatly in error except when the uniform grid is extremely fine. 
leading to huge storage requirements. The use ofadaptive grids, it is proposed. will resolve the twin problem 
of excessive storage space and inaccuracy of results. Therefore, two adaptive grids using different methods 
of generating the weighting function are developed and tested in this work. One of the adaptive grids 
produced results that compared favourably with the exact solution with as few as I I grid points. With the 

uniform grid, as many as 301 grid points would have been required. 

INTRODUCTION 

TRAMPORT processes commonly encountered in 
industrial practice are modelied by equations with 
convective transport in a predominant flow direction 
(usually axial) and diffusive transport in a per- 
pendicular direction. Another possible feature of such 
models is a discontinuity in boundary condition 
experienced by the fluid in entering the duct. If, for 
instance, the entry profiles are uniform and a step 
change occurs in the entrance, then boundary layers 
characterized by large gradients develop close to the 
walls of the duct. Consequently, close to the duct 
entrance (the region of interest) either for analytical 
or numerical purposes, all we have is a thin layer next 
to the walls, since the bulk of the fluid outside this 
layer has not felt the presence of the walls. This 
behaviour is not limited to the heat transfer problem 
as examples are legion even in mass transfer processes. 

One such model problem is the hydrodynamically 
developed but thermally developing heat transfer to 
a Newtonian fluid in a circular duct governed by 
the classical Graetz equation. Despite its obvious 
simplicity, the Graetz problem has provided useful 
guidance in the design of heat exchangers. Of greater 
significance is the fact that it has served as a model 
problem for testing various solution techniques, since 
its solution has been well established [l]. The problem 
was first solved by Graetz in 1883 using the separation 
of variables technique. He evaluated the first two 
eigenvalues and eigenfunctions and since this his- 
torical attempt, other innumerable studies have 
sought to extend his work by providing more terms 
of the series solution. It is well known that even with 
I21 terms, the series solution does not converge near 
the duct entrance. A partial resolution of the difficulty 
was suggested by Leveque (21, who employed the ‘flat 
olate’ solution near the singularity at the emrance. 

Numerical solution techniques using the finite- 
difference scheme have fared even worse. The 
extended Graetz problem, which included axial heat 
conduction, was solved numerically by Schmidt and 
Zeldin [3] using 41 grid points in each coordinate 
direction. Deviations of up to 25 % were observed in 
the local Nusselt number close to the entrance. In 
Grigull and Tratz [4], mean Nusselt numbers were in 
error by as much as 16% when compared with the 
Leveque solutions. A numerical investigation by 
Conley et al. [5] revealed that all these efforts failed 
because of the inadequate resolution of the thermal 
gradients near the duct walls by the coarse grids 
employed. As many as 301 grid points were required 
to replicate the analytical soltirion. Such fine grids 
would place excessive demands on computer storage 
requirements if they were to be employed for problems 
of practical and industrial relevance, which often 
times are governed by complex transport equations. 

A more economic method is evidently desirable. 
The occurrence of large gradients near the wall sug- 
gests that grids should be appropriately concentrated 
in this region, thus placing available computing power 
in an area where it is desired most. Since the extent of 
this region is not known a priori, the grid placement 
method to be adopted must possess an in-built mech- 
anism for delimiting the region. In addition, since 
such problems are often times evolutionary in nature, 
usually spatially, grid point deployment must be 
altered in response to the changes in the numerical 
solution from one duct location to the next. The 
adaptive grid method, which is increasingly gaining 
attention in computational fluid dynamics research, 
seems to be an attractive option worth investigating. 

The adaptive grid method dynamically con- 
centrates grid points in regions of rapid variation of 
solution by equidistributing some weighting function 
of the solution. The weighting function is normally 
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I 

NOMENCLATURE 

heat capacity t(‘, weighting function at grid point i 
thermal conductivity axial coordinate 
local Nusselt number ;* axial coordinate, (.r/2r,)/& 
Peclet number, 2r,pC,u,/k [dimensionless] 
radial coordinate 3 coordinate function, (I- Ri) ‘,9X*. 
tube radius 
radial coordinate, r/r,, [dimensionless] Greek symbols 
radial coordinate at grid point i !X thermal diffusivity, pC,,/k 
temperature i radial coordinate 
entrance temperature ‘1 axial coordinate 
wall temperature 0 temperature [dimensionless] 
velocity 4 bulk temperature [dimensionless] 
mean velocity P density. 

chosen to reflect the solution gradient and the varied parabolic velocity profile : 
forms of the weighting function, their weaknesses and 
merits can be found in Thompson et al. [6]. R = r/r0 

In the present study, the Graetz problem will be 
solved using three different grid types-two adaptive T- T, 

o=- 
grids and the regular uniform grid. The first adaptive T, - T,, 

grid will be constructed from a solution known a X* = (.u/2r,,)/Pe 
priori and available analytically. The Leveque solu- 
tion has been selected for this purpose and it needs to to obtain 
be mentioned that in the strictest sense, the grid thus 
obtained is not adaptive. The second adaptive grid is 7 ? /R,W\ 
generated from the numerical solution to the Graetz 

- _ ____ -- - 

problem and is thus truly adaptive. The three grid 
R ZR ZR t I 

Tf) 
= (1 -R’)+ (W 

types will be compared in terms of accuracy of 
solution, storage and CPU time requirements. O(R,O) = 1.0; 0(1.X*) = 0 and 

itf 
;R (0, X*) = 0. 

ANALYSIS 

The problem to be investigated is the entrance 
region laminar heat transfer to viscous incompressible 
constant property Newtonian fluid flowing in a cir- 
cular tube with a fully developed entrance velocity 
profile. The fluid enters the duct with a uniform tem- 
perature T. while the duct wall is maintained at T,, 

which is different from the entrance value. Such effects 
as viscous dissipation, internal heat generation, axial 
heat conduction and natural convection are assumed 
to be negligible. With the foregoing assumptions, the 
thermal energy equation and the boundary conditions 
are 

(14 

T(r, 0) = T, ; T(r,, x) = T, and $0, x) = 0. 

(lb) 

To render the equations non-dimensional, we intro- 
duce the following variables and substitute for the 

Equation (2a) is parabolic with the axial coor- 
dinate serving as a time-like coordinate. Whereas the 
radial coordinate is delimited, the axial coordinate is 
unbounded and can therefore, in principle, span the 
infinite domain. Numerically, however. a limit needs 
to be imposed. Usually, computation is discontinued 
when changes in a gross property (e.g. .Vrl,.) become 
insignificant. Since the solution at the entrance is 
known (from the entrance condition) to initiate the 
numerical solution, an axial step is taken and the 
equation solved at that location. We proceed to the 
next location and the procedure is repeated. In view 
of all these and the fact that the boundary layer 
develops in the radial direction, grid adaption need 
only be effected radially. Cognizance must, however, 
be taken that the radial coordinate now becomes 
dependent on the axial coordinate and equation (2a) 
modified accordingly. 

Since it is more convenient to solve equation (2a) 
with uniform spacing, let the (R.X*) coordinate be 
transformed to the (i, q) coordinate such that variable 
spacing in (R. X*) corresponds to uniform spacing in 
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(i, q). Hence 

2 a28 I I 2 a26 
+i~p ,+qRj&’ (3c) 

Using the following relationships : 

1;R =f 
i 

v 

4RR = 
2 

Ri’ 

q.=f 
‘I 

VRR = 
3 

R: 

equations (2a) and (2b) become, after substitution 
and rearrangement 

4 z’e 
+-- + 1 a2e + 1 aze = 0 

R,R, a;?~ R; 84’ R,Z 8’1’ 
(sa) 

f3((,0) = 1.0, B(i(R = 1),X*) = o;~(l,X*) = 0. 

(sb) 

Equation (Sa) is the Graetz problem written in 
generalized coordinates, but in this study, interest is 
restricted to the case 

q = q(R, X*) = q(P) = X* 

( = i(R,X*) = j(R) 

whence equation (5a) becomes 

(64 

(6b) 

2 2R,, --- 
RR, R; 

(7) 

Grid adaption 
The essence of most adaptive grid methods is the 

equidistribution, over a field, of some weighting func- 
tion w(R) and, for a one-dimensional problem, this 

can be stated mathematically as 

I 

R It I 

w(R) dR = constant 
R1 

(8a) 

or 

ARiwi = constant (8b) 

where AR, is the grid interval and subscript i denotes 
the grid point number. From equations (8a) and (8b), 
it is obvious that if the solution gradient is chosen as 
the weighting function, then wherever it assumes a 
large value, the grid interval will be small and vice 
versa. By construction, the c coordinate can be made 
to take on integral values such that A[ = 1 and the 
maximum value of c, i.e. M, is equal to the total 
number of points. Consequently 

AR = R,A; = R, (9) 

so that equation (8b) becomes 

Riw = constant = C. (lOa) 

To evaluate the constant, we rewrite equation (10a) 
as 

iR =; (lob) 

and integrate to obtain 

I 
w dR (1 la) 

or 

w dR. (lib) 

The general equation for the grid locations Ri then 
follows : 

rt,aR=ArbvdR (12a) 

or 

sJr,iw(R)dR=rw(R)dR 

(i = 2, 3, . . . , M- 1). (12b) 

The coordinate transformation equation (12b) is in 
general coupled with equation (7a) rendered in dis- 
crete form and both equations have to be satisfied 
before proceeding to the next axial location. 

Choice of weighting function 
Case a: uniform grid. When the weighting function 

is set to 1, we recover the uniform grid. 
Case b : adaptive (Leveque) grid. Here the weighting 

function w(R) is chosen to be the thermal gradient 
i%/aR with 0 given by the Leveque solution, i.e. 

--O’ da (13) 
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where < = (1-@/(9X*)’ ‘. Equation (12b) then 
becomes 

Case c: conventional a&price grid. The weighting 
function is chosen to be 

To evaluate the integrals, we first make a change of 

variable from R to 5, and subsequently set <’ = ,r to 
obtain , 9X’ 

.J -213 e-~ dy_ s ? .-2 3 e-‘dy 
0 1 

i-1 I 9.r. 
=p 

s 3(M-I) 0 ? 
,-L3e-, dy (15a) 

or 

Q(& (1 - R,)‘,!9X) 

= I-(!)- %_f(r(+Q(:. 1/9x*)) 

(i=2.3....,M-I) (ljb) 

where the Q(n, Z) function is given by 

Q(u,z) = 
d 

r e-‘~“-’ dy. (16) 

For 0 < X* < IO“ which is the range of interest, 
Q(:, l/9X*) K I-( :); hence equation (ljb) can be 
rewritten as 

(M-i) 
Q(l.(‘-R,)‘/9X*)=r(:)-(~,_,)r(t) 

or 

?(:,(I -~;)3i9x*) = Er(ij 

(i=2,3. . . ..M-1) 

where 

~(n, -) = ee’ J”- ’ d-r = I-(U) - Q(~, -). 

(174 

(‘7b) 

Equation (I 7b) is a non-linear equation in z or (R,) 
and substituting for the -/(a, Z) function. it becomes 

i (_l)k="l 31-k 

L=O k!(l,fk) 
= 2.678939 g 

(i = 2,3,. . . . M- I). (18) 

If we employ the Newton-Raphson method. the iter- 
ation equation at the n + 1 level will be given by 

t 
k=O k! 

(i = 2.3,. . , M- I). 

)L’ = I +filao/?f71i l8:?Rl,,, (20) 

where B is a constant taken as I .O in this work. 

hlethoil ofsolution 

A standard grid network with the dependent vari- 
able stored at each grid point is laid out on the com- 
putational domain having a uniform radial spacing of 
A; but variable spacing in R. In equation (7a), a 
second-order central difference scheme is employed in 
approximating all partial derivatives in the radial 
direction and the upwind scheme for the first-order 
derivative in the axial direction. The scale factors R;, 

RI; and the variable radial spacing R are evaluated 
from the coordinate transformation equations. For 
the uniform grid. the results are straightforward and 

there is no coupling between the energy equation and 
the coordinate transformation equation. However. 
this is not true for the two adaptive grids. In the case 
of the adaptive (Leveque) grid, equation (19) is 
solved iteratively for z until there is convergence. 
Here. the convergence criterion defined as change in 
variable during the iteration divided by the previous 
value was set to IO-‘. Twenty-one terms were found 
to be sufficient for accuracy in the series for the range 

of X* considered. With the :(R,) values, the dis- 
cretized form of equation (7a) can then be solved and 
we proceed to the next axial location. 

With the conventional adaptive grid (case c), both 
the energy equation and the coordinate trans- 
formation equation need be solved simultaneously 
since the weighting function depends on 0, which is 
not known a priori unlike in the case of the adaptive 
(Leveque) grid. The implementation of the method 
is initiated on a uniform grid which provides rough 
estimates for the thermal gradients across the radial 
domain. The location where there is a large change in 
thermal gradient is assumed to define the boundary 
layer. This region is next subdivided uniformly and the 
energy equation solved. With the thermal gradients at 
these new grid locations, the coordinate trans- 
formation equation can now be solved for the R,s. 

Associated with these R,s are new values of tem- 
perature 0; therefore there is need for iteration which 
is discontinued when the R,s do not change appre- 
ciably. At this point, we can proceed to the next axial 
location and the procedure can be repeated. 

Upon obtaining the temperature profile, we cal- 
culate two quantities of special interest, the dimen- 
sionless bulk temperature &,, and the local Nusselt 
number lV~r,Y.. To evaluate 8,. the energy equation is 
integrated over a control volume of thickness AX* to 
give 

0,(X*) = 0,(X* -AX*) 
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while Nux. is obtained from 

_2!$ 

Nux.= 8 R=‘. 
b 

(21b) 

For the purpose of comparison, the thermal gradient 
in equations (Zla) and (21b) was evaluated numeri- 
cally using the 2-point, 3-point and Spoint rules. The 
8, and Nux. values so obtained have been designated 
accordingIy. 

RESULTS AND DISCUSSION 

The values of 0, and Nux. as obtained from the 
different grids considered in this study are presented 
in Tables 1-9. The computation in each case was 
initiated with an axial step size AX* of lo-’ and for 
each order of magnitude change in X*, a cor- 
responding change in AX* was made. The results of 

Shah and London [I], also included in the tables, 

were obtained from analytical solution of Leveque’s 
problem. 

In Tables 1-3, the size of the uniform grid is varied 
to determine the optimum size for accurate values of 
the gross properties & and Nux.. The size so obtained 
is then used to assess the storage and CPU time 
requirements for the adaptive grids. With M = 21, 
the & and Nux. values are greatly in error even at 
X* = 10e4, an axial coordinate sufficiently far from 
the entrance. In addition, the value of Nux. is depen- 
dent on the expression employed in approximating 
the thermal gradient; the arbitrariness so introduced 
further attests to the unsuitability of this grid size. 
When the number of radial grid points is increased to 
101, the results are still unacceptable, even though a 
noticeable improvement in the accuracy of the results 
is obtained. Further refinement of the grid (Jf = 301) 
produces results which can be considered accurate 
enough for the purpose of comparison. Therefore, 
this grid size is appropriately assigned a factor of 

Table 1. Ob and Nux. from the uniform grid at X’ = lo-” 

Number of grid points 
21 101 301 Shah and London [I] 

ep’ 
et” 
ep 
Nu$ 
Nu$ 
N&i 
Storage factor 
CPU time factor 

0.9998 0.9994 0.9993 0.9994 
0.9995 0.9992 0.9993 0.9994 
0.9997 0.9991 0.9993 0.9994 

39.6725 1 to.0190 109.2110 106.5380 
59.3469 130.5790 109.8190 106.5380 
82.0273 116.3660 108.7670 106.5380 
0.684 0.774 1.0 - 
0.208 0.457 1.0 - 

Table 2. &and Nuy. from the uniform grid at X* = tom5 

Number of grid points 
21 101 301 Shah and London [I] 

ep 0.9985 0.9970 0.9969 0.9971 
ey 0.9977 0.9967 0.9969 0.997 1 
ep 0.9969 0.9968 0.9969 0.997 1 
Nu:?! 36.9692 50.1998 50.0394 48.9140 
Iv&! 53.9836 50.9346 49.9938 48.9140 
Nu:?’ 71.4184 49.2084 49.9557 48.9140 
Storage factor 0.684 0.774 1.0 - 
CPU time factor 0.198 0.451 1.0 - 

Table 3. eb and NUT from the uniform grid at X* = lo-’ 

Number of grid points 
21 101 301 Shah and London [l] 

fg2’ 
02) 

ep 
Nt@ 
N@! 
Nu’$’ 
Storage factor 
CPU time factor 

0.988 1 0.9860 0.9860 0.9866 
0.9840 0.9857 0.9860 0.9866 
0.9815 0.9859 0.9860 0.9866 

23.4032 22.8911 22.8155 22.2750 
28.4465 22.8288 22.7797 22.2750 
26.2373 22.7749 22.7775 22.2750 
0.684 0.774 1.0 - 
0.194 0.449 1.0 - 
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unity for storage and CPU time requirements. The 
percentage error in Nu,. from X* = 10m6 to 10mJ 

requirements for the adaptive grids are significantly 

averages about 2.4% and is never greater than 3% 
less than those for the uniform grid. As X* increases. 

with Shah and London’s results used as bases. 
there is a marginal decrease in the CPU time require- 

In Tables 4-6, the results from the adaptive 
ments but the error in Nu,-. still remains substantially 
high for the ALG (13% at X* = 10e5 and 14% at 

(Leveque) grid (ALG) and adaptive grid (AG). both X* = 10eJ) and low (y 1.5%) for the AG, with the 
with 1 I nodal points, and the uniform grid (M = 301) AG consistently performing better than the uniform 
are presented. At X* = 10e6, the two adaptive grids 
produced the same values of Ob which are not different 

grid. The axial variation of Nux. for the different grids 

from that obtained by Shah and London ; however, the 
is indicated in Fig. 1 while sample radial profiles of 
temperature are as shown in Figs. 2(a) and (b). 

Nux. from the ALG is in error by about 12.5%, the 
AG by less than 1.5% and the uniform grid by 3%. 

When the number of adaptive grid points is 
increased to 21, the results of Tables 7-9 indicate 

It is noteworthy that the storage and CPU time some slight improvement in the accuracy of the ALG 

Table 4. 0, and Nrr,. from the adaptive grids at X* = IO-b 

t&Z) 
0:” 
l3y 
Nuy! 
N&! 
N$! 
Storage factor 
CPU time factor 

Adaptive 
(Leveque) Adaptive Uniform 

grid grid grid 
Number of grid points 

II II 301 Shah and London [I] 

0.9993 0.9993 0.9993 0.9994 

0.9993 0.9993 0.9993 0.9994 

0.9993 0.9993 0.9993 0.9994 

119.9830 107.6120 109.2110 106.5380 
120.0110 108.0150 109.8 190 106.5380 

119.8900 107.6130 109.7670 106.5380 
0.726 0.77 I I .o 
0.762 0.826 I.0 - 

Table 5. U, and Nu,. from the adaptive grids at X* = IO- ’ 

Adaptive 
(Leveque) Adaptive Uniform 

grid grid grid 
Number of grid points 

II II 301 Shah and London [I] 

@2) 

ep 
ep 
Nu$’ 
Nu$ 
Nu:s! 
Storage factor 
CPU time factor 

0.9966 0.9970 0.9969 0.9971 
0.9966 0.9969 0.9969 0.9971 
0.9966 0.9970 0.9969 0.997 I 

55.2732 49.6474 50.0394 48.9140 
55.2263 49.7108 49.9938 48.9 140 

55.1709 49.4996 49.9557 48.9140 
0.726 0.771 I.0 - 

0.754 0.821 I.0 

Table 6.6, and Nux. from the adaptive grids at X* = IO-’ 

Adaptive 
(Leveque) Adaptive Uniform 

grid grid grid 
Number of grid points 

II Ii 301 Shah and London [I] 

ep 0.9846 0.9863 0.9860 0.9866 
Hi” 0.9846 0.9863 0.9860 0.9866 
6;” 0.9846 0.9864 0.9860 0.9866 
N&! 25.5037 22.0526 22.8155 22.2750 
Nr&! 25.4215 2 1.9997 22.7797 22.2750 
Niiv! 25.3955 21.8975 22.7775 22.2750 
Storage factor 0.726 0.771 1.0 
CPU time factor 0.753 0.820 I.0 
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. . . . . 

EO- --- 

Uniform grid 2 I 

Uniform grid 101 

Uniform grid 301 

Adaptive (Leveque ) grid I I 

Adaptive grid I1 

104 2 x 104 5 x 104 105 2 x 10’ 5x 10” 106 

l/X’ 

FIG. I. Axial distribution of Nux. for the different grids. 

results, with Nu,. being in error by about 8%, a value 
which can still be considered unacceptably high. While 
the storage requirements continue to be far less than 
those for the fine uniform grid, significantly more 
CPU time is now required, especially for the AG. 
Based on the above results, the conventional adaptive 
grid is recommended. The results of the present exer- 
cise clearly indicate the gains that can be realized 
from the judicious use of grid points through adaptive 
gridding. While the storage requirements have been 
drastically reduced through the use of fewer grid 

(a) 1.0 

0.98 

R 

0.96 

0.94 

4 
*. \ . l \ 

-. . . . . 
- ALGIl . . 

. 
--- AG21 . 

. 
--.-- UG21 . 

. 
. 
. 

,y’ = 10-b . 

I , , I 

0.2 0.4 0.6 0.8 

e 

points, the accuracy of the numerical results has not 
suffered, in fact a considerable improvement has been 
recorded for this one-dimensional problem. 

If the results are extended to two dimensions, the 
storage reduction will be approaching about 50%, a 
value which is quite substantial. There is, as expected, 
an optimum number of grid points beyond which no 
noticeable improvement in the results is achieved. For 
the problem under consideration, 1 I grid points seem 
to suffice if the conventional method of generating 
adaptive grids is adopted. Associated with this opti- 

(b) 1.0 

0.98 

R 

0.96 

0.94 

- ALG21 

--- AG21 
..-.. UG2l l \ 

‘\ 

XL = 10-s l .\ 
.\ 
l \ 
5 
.I 
. 

I I I I 

0 0.2 0.4 0.6 0.8 

I9 

FIG. 2. (a) Radial temperature profiles for the different grids at X* = 10e6. (b) Radial temperature profiles 
for the different grids at X* = lo-‘. 
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Table 7. & and Nu,~. from the adaptive grids at ,I’* = 10e6 

Qb” 
8;” 
eg5’ 
Nu$ 
NU:?’ 
N&! 
Storage factor 
CPU time factor 

Adaptive 
(Leveque) Adaptive Uniform 

grid grid grid 
Number of grid points 

21 21 301 Shah and London [l] 

0.9993 0.9993 0.9993 0.9994 
0.9993 0.9993 0.9993 0.9994 
0.9993 0.9993 0.9993 0.9994 

114.6150 109.636 109.21 IO 106.5380 
114.5790 109.622 109.Sl90 106.5380 
114.5620 109.569 109.7670 106.5380 

0.739 0.784 I .o - 
1.474 2.005 1.0 - 

Table 8. O,, and NL~,~. from the adaptive grids at X” = lo-’ 
_ - 

Adaptive 
(Leveque) Adaptive Uniform 

grid grid grid 
Number of grid points 

21 21 301 Shah and London [I] 

op 0.9968 0.9969 0.9969 0.997 I 
op 0.9968 0.9969 0.9969 0.9971 
ey ’ 0.9968 0.9969 0.9969 0.9971 
Nu? 52.5613 50.2486 50.0394 48.914 
Nu:?’ 52.5162 50.1956 49.9938 48.914 
N@! 52.5086 50.1822 49.9557 48.914 
Storage factor 0.739 0.784 1.0 - 
CPU time factor 1.470 2.138 I.0 - 

Table 9. Ob and Nur. from the adaptive grids at X* = 10d4 

Adaptive 
(Leveque) Adaptive Uniform 

grid grid grid 
Number of grid points 

21 21 301 Shah and London [I] 

@I 0.9853 0.9860 0.9860 0.9866 
0b” 0.9854 0.9860 0.9860 0.9866 
t.IbS’ 0.9854 0.9860 0.9860 0.9866 
Nu’$ 24.1119 22.9514 22.8155 22.2750 
N&! 24.0627 22.8926 22.7797 22.2750 
N&! 24.0594 22.8773 22.7775 22.2750 
Storage factor 0.739 0.784 1.0 - 
CPU time factor 1.473 2.181 I.0 - 

mum is a CPU time considerably less than that for a 
uniform grid of the same accuracy. Above this opti- 
mum value, the CPU time increases considerably. 
However, the most important consideration is not the 
CPU time but the storage requirement, as happens 
when for example a micro-computer with limited 
storage space is all that is available to the user. 

CONCLUSIONS 

An adaptive grid with the weighting function gen- 
erated through the conventional method has been suc- 

cessfully developed. With as few as 11 grid points. 
numerical results having better accuracy than a uni- 
form grid of 301 grid points have been obtained. 
Consequently, storage requirements have been 
reduced and an extension to two- or three-dimen- 
sional problems, which is straightforward, will result 
in even greater reduction. While the CPU time re- 
quirement is usually not an important consideration 
when the situation calls for fewer grid points, it has 
been observed that this factor is not increased by 
adaptive grids unless the optimum number of grid 
points is exceeded. 
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METHODE DE GRILLE ADAPTATIVE POUR LES EQUATIONS DE CONVECTION ET 
DIFFUSION 

R&m&--Les solutions numeriques du probleme classique de Graetz dans la region d’entree d’un tuyau 
donnent des estimations du nombre de Nusselt qui sont tres erronees sauf quand la grille unifonne est 
extr&nement fine, ce qui conduit a des besoins Cnormes de memoire. Alors est proposee I’utilisation des 
grilles adaptatives pour r&soudre a la fois ies problemes lies de la mtmoire excessive et de l’imprecision des 
resultats. Par suite, dansce travail sont developpees et test&es deux grilles adaptatives utilisant des methodes 
differentes de generation des fonctions de pond&ration. L’une des grilles donne des resultats qui s’accordent 
bien avec la solution exacte avec seulement 1 I points. Avec la grille uniforme, il faut 301 points pour 

atteindre la meme resultat. 

EIN VERFAHREN MIT ANGEPASSTEM GITTER FUR KONVEKTIONS-DIFFUSIONS- 
GLEICHUNGEN 

Zusammenfasaung-Numerische Losungen fiir das klassische Graetz-Problem im Eingangsbereich eines 
Rohres fiihren zu Abschltzungen fur die Nusselt-Zahl, die mit einem grol3en Fehler versehen sind. Dies 
kann bei Wahl eines gleichmiiBigen, extrem feinen Gitters vermieden werden, was jedoch zu einem riesigen 
Speicherbedarf fiihrt. Die vorgeschlagene Verwendung eines angepaBten Gitters lost das Doppelproblem 
eines riesenhaften Speicherbedarfs und einer Ungenauigkeit der Ergebnisse. Daher werden zwei angepa0te 
Gitter entwickelt und getestet, die unterschiedliche Verfahren bei der Generierung der Gewichtungsfunktion 
verwenden. Eines der angepaBten Gitter hefert Ergebnisse, die bei Verwendung von nur 11 Gitterpunkten 
recht gut mit der exakten Liisung tibereinstimmen. Bei Wahl eines gleichmllligen Gitters hltte man 301 

Gitterpunkte benctigt. 

METOA AJ&AI-ITHBHbIX CETOK J&JIR YPABHEHHH KOHBEKHMM M flM@@Y3HH 

Asmurauma-%icnetnibre pemetittn utaecsrnecxol 38nami Fperua mm ~xonxioro ygacrra rpy6ar noa- 
BOJlXlOT IIOJIj’WTb OUeHUl ‘IHCdIa +Cc.nb~a, KOTOpYe HMelOT IIO~IUHOCTSI BO BCCX CJI)‘¶~XX, 3a 
ifc#ao’IeHHeM ~enrorne~CTo~ C+IKR nocroltliroro paahfepa, PTO Bbr3btnaer ~eo6xoms~ocn, 6o.ramoro 
o6aema rtaMxrn. TIpeztrtonaraercn. OTO mmo~oaamre ananr~ntmtx ceroe paapetmrr npo6neMy 6ob- 
UIOrO 067,eMa IlaMSTH A HeTOSHOCTH PCIJyJlbTaTOB. c 3TOii UcJIbiO Ha OCHOBC p%l~IHWibrX MeTOilOB 06pa- 

30BaHHII BeCOBO~ &WKUHH pa3~6OTItHbl H UpOKPeHbl lIBc EUWlTHBEIble CeTKH. PeSjQX.TaTbl, 
IlOJQ’WXHble C HCIlOJlb3OBaHHeM OlIIfOfi X3 HSiX, )‘~ORJleTBOpHTeJIbHO CO~JXlQ’lOTCS C TOPHblM ~I.lXIiU~.W 

arm 11 roqer CCTKH. &IS ccllw nomonmtoro paahlepa H~~~XOIUIM~~ 30 I ToSex. 


